
643 

3. LUR'YE A.I., Non-linear Elasticity Theory. Nauka, Moscow, 1980. 
4. MUSKHELISHVILI N.I., Certain Fundamental Problems of the Mathematical Theory of Elasticity. 

Nauka, Moscow, 1966. 
5. MUSKHELISHVILI N.I., Singular Integral Equations. Nauka, Moscow, 1968. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.53,No.5,pp.643-649,1989 
Printed in Great Britain 

0021-8928/89 $i0.00+0.00 
©1990 Pergamon Press plc 

THE CONSTRUCTION OF THE DISSIPATIVE PLASTIC FLOW FUNCTION 
ON THE BASIS OF MICROSCOPIC REPRESENTATIONS u 

V.N. LUKERCHENKO 

A dissipative function (DF) of the plastic flow of a single crystal is 
constructed on the basis of microscopic representations. A thermodynamic 
analysis is performed of the possible mechanical energy dissipation 
mechanism for moving dislocations. The general expression constructed 
for the DF is reduced to a form such that the latter depends only on 
characteristics of the process (strain rates) and macroscopic 
characteristics of the ensemble of dislocations. The physical meaning is 
uncovered here and the value of all the coefficients in the determination 
of the DF is indicated. The deduction is made that the phenomenological 
representation of the DF just as the sum of first and second degree 
homogeneous functions in the plastic strain rates is generally 
non-uniform and the rate of change of the mocrostructure parameters must 
still be taken into account. 

The construction of the dissipative function (DF) 

(where T is the absolute temperature, q' is the uncompensated heat, and t is the time) 
governing the magnitude of entropy growth due to internal irreversible processes is the most 
important element in describing plastic deformation and the construction of new models of 
continuous media /i, 2/. Usually it is postulated phenomenologically that the DF for plastic 
media is a homogeneous (linear or non-linear) function of first degree in the plastic strain 
rates e,; while it is a homogeneous second-degree function in the plastic strain rates or 
the sum of the above-mentioned first and second degree homogeneous functions for viscoplastic 
media /3, 4/. It is impossible to regard such an approach as completely satisfactory for the 
following reasons. 1 ° . It is assumed that the coefficients in the determination of the 
homogeneous functions can be determined experimentally. As a rule, however, the appropriate 
experimental data have a large spread. 2 °. The coefficients mentioned are not determined 
from physical representation, i.e., on the basis of the material microstructural character- 
istics, whereupon their physical meaning is also not clear. 3 ° . It is also not known whether 
a DF of a plastic medium with dislocationscanbe constructed just like a homogeneous function 
(or the sum of homogeneous functions) in the plastic strain rates without taking account of 
the microstructural parameters of the plastic flow and their rate of change. 

The DF was introduced in the form of the general expression (/5-7/, et al.) 

= • (~ , / ,  T , ~ , ~ ' )  

when taking account of the internal parameters and their rates of change, where ~ is an 
internal parameter. However, the form of the DF is not made specific here and the proposed 
models were not properly microscopic. 
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I. F~'~lQ~nta~ ass~mptiom8 and init~,uZ micPostl~a~ty/-e. Let us consider an infinite 
homogeneous BCC or HCP-type single crystal oriented for single slip. We shall consider strain 
to occur at medium temperatures and loading rates while the transverse slip of the screw 
elements of the dislocations do not exist (as is justified at the initial stage of strain and 
especially for single crystals with a low stacking energy). We assume the coordinate system 
to be rectangular, and the space Euclidean. 

The manifold of mobile curvilinear dislocation structures in the crystal reduces to two 
main types: loops and segments that are characterised, in turn, by the Burgers vector b and a 
mean non-local radius of curvature R /8/. Some of the dislocations are fixed: flxed baslc 
growing dislocations with density ~ and Burgers vector b and fixed growing scaffold dis- 
locations with density ~, and Burgers vector b~,~ The slip plane of the mobile dislocations 

is characterised by the unit normal vector n while the orientation of the dislocation element 
is characterised by the unit tangent vector ~ (or the angle ~ between b and ~). 

8. F ~ n t a ~  eq~axtion8 of t~ ~gdel. Randomly distributed in parallel slip planes per 
unit volume of the crystal are ~0 dislocation segments whose distribution density over the 
lengths of the base ~ corresponds to the distribution density of the spacings between 
points scattered randomly on the line 

¢ (X) = ~ l ( :  exp ( - - t l0  -~) (2 1) 

where 2X o = <~>~. Here and below the symbols <...>D,<...>~, and <...>R, respectively, denote 
the mean along the dislocation line, the mean in the ensemble of segments, and the mean in the 
ensemble of loops. Under certain conditions, the mobile segments whose base length I can 
vary from the minimum value Xt to infinity emit dislocation loops whose initial radius is H~ 
The segment length /(l,t) with base length X that changes in the interval [X, 2~Rx+X] 
can be characterized by the function ~ (~, t) = l(~, /) (2a~ + l)-~. The area marked by the 
segment with the base length I per unit time will be considered to be equal to ~ 2~.(i,/) 
where ~ (~,t) has the meaning of the area marked by a segment at the time t to the initial 
area ~ 2 of the loop emitted by this segment. The characteristics ~(k,t) and ~ (~,t) 
are connected by the relationship 

~R~q" (~, X) = (2~R~ + ~) ~ (~, ~) <v (~, ~>D (2 2) 

where <v(l, X)>D is the mean of the segment velocity along the length at the time %. 
The total length per unit volume of the segments A,(t) is comprised of lengths of 

fixed segments with base length ~It and moving segment lengths with total density ~, (t). 

~t 
A,(t)= Nof ~(p(~)d~ +a,(t), a,(t) =~ l(~,t)No~(X)dk 

0 ~'t 

(2.3) 

T a k i n g  i n t o  a c c o u n t  t h a t  (2uRx t + Xt) ~ (Xt, t) = l (Xt, t) = ~,, r (~, t) = 2 n R ~ "  (~, t) we 
obtain for the elementary increment of  the segment density 

dA. = f 2~tRx~l" (~, t) No¢ p (k) d~. dt (2.4) 
~t 

Using the operator <X>; the mean length of the dislocation curve of the moving segments 
can be determined 

(2.5) 

Here and henceforth, it is assumed that the integration over k is between ~t and c~. 
The crystal loading law must be given for the further evaluation of </(k, t)>x. 

In addition to the segments, N(t) of the mobile dislocation loops radius distribution 
function density V (R,t) and radii from the minimum r t to the maximum R t is found at the 
time t per unit crystal volume in parallel planes of single slip. The function ~(R, t) is 
non-zero 3ust for rt<B<Bt and is normalized to one 

I W (R, t)dR = t (2 6) 

Here and henceforth, the radius R is understood to be the mean non-local radius of 
curvature and it is also assumed that integration over R is everywhere between r t and R t. 

An increase in the density of the slipping dislocation loops occurs because of broadening 
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of the loops present earlier in the crystal, and due to newly generated loops. Loops with 

the identical mean non-local radius of curvature R can have a distinct mode configuration 
and size but on the average we shall approximately assume that the length of the mentioned 
loops equals the length of circular loops of the same radius. Then the sliding loop density 

will equal 

aO(t) = Zn(R)N(t) = 2nN(t)S RY(R,t)dR (2.7) 

Taking into account that Y(&, t) =Y(r,, t) = 0 and (V)D = R’, we obtain the following 
expression for the growth rate of the mobile loop density: 

a,‘(t) = 2nN’(t) S RY (R,t)dR + 2nN(t) S ((v)DY,(R,t) + RT)dR (2.8) 

We furthermore assume that the dislocation motion equation 

E d.kwh%~,,, = E k&k% <&ii> bd,,, + Vj”h + rip’ + 3 @.)D 

<a% = 1/y b-lbtd,,,) (A,Gb 1/B i- a,(t) + A, (t) + A,Gb,*, I/B;) 

b = 1 b 1, bdm = bdnmr b(drnj = ‘1~ (hdn,, + b&d) 

(2.9) 

is valid for the component <v, (R, O>D of the mean velocity of motion of the dislocation 
element with tangent vector 5. 

Here a$A and (a$,) are components of the external applied stress and the mean stress 
(over the crystal) needed to push the dislocation element through the ensemble of adjacent 
dislocations, F)(p) are the components of the Peierls dynamic force (F(P) = 1 FcP)I), Bis the 

damping factor, C is the shear modulus, A, and A, are constants, and elhl are the Levi-Civita 
symbols (e,k#&Lnl > 0 and 1, k, 1, d, m = 1, 2, 3). 

The force of the mean non-local selfaction of the dislocation structures whose components 
are /8/ 

l 

<Fj ‘>I, = e,~l~,nlAGb2!R 

also occurs in the relationship (2.9), where A =‘I, For a dislocation segment with base 
length h the absolute value of the force <F”‘>D = < 1 F(.)I >U varies between AGbZ/(l/,h) and 
AGb21Rh during the whole evolution of the segment up to emission of the loop, we hence assume 
that 

(;F'"' (A, x)>D>x = AGb2!(“/&) (2.10) 

where x is the time, which varies in the interval between two dislocation loop emission 
times. 

3. ReZation of the diirtocation ensemble &aPaCteri8tiC8 to the magnitude of the crystal 
plastic strain rate. Because the crystal plastic strain &I (t) is proportional to the 
total area marked by the moving loops and segments /0/, we have 

I,> = b(,,, s nRaN (t) Y (R, t) dR + b(o) 5 ERA? (h t) Nocp (h) da (3.1) 

where the first term on the right-hand side of (3.1) yields the contribution from the loop 
motion and the second from the segment motion. We furthermore assume that the area marked 
by the segment at the starting time equals zero, i.e., q (A*. t) = 0. Taking into account also 
that Y (I?,, t) = Y (rl, t) = 0 we differentiate (3.1) and we obtain 

811 ‘0) = btzl) 2nSN (t)R <u(R, t)>D Y (R, t)dR + 

bc,,,S nR* (N (t) Y (R, t))*dR $- btl,) S nRhaq’ (h, t) N,cp (h) dh. 

(5.2) 

where the first two terms on the right-hand side of (3.2) yield the contribution to the 
quantity * Eif from the loop motion, and the third term is the contribution from the segment 
motion. 

4. Pundmmta~ mechanisms of the dissipation of moving dislocation mechanical energy. 
We examine below the fundamental mechanical energy dissipation mechanisms of moving 
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dislocations into crystal thermal energy. We first write the expression for the total magni- 
tude of the increments of the moving dislocation structure energy being dissipated (the loops 
and segments) per unit crystal volume 

dq' = I l (B <t'>D) <V)D R N  (t) W (R, t) dR  dq) dt -~- FtP) <V>D Rz% (t) > 
o o 

T (R, t )dR  d~ d t ÷  ~ I [ (a(a*')~ (t)) barn ] <V}D R N  (t) q] (R, t) dRdc9 d t +  
o 

S( [ ~")~" " F(v) OdmUam -- <<F('))D)x ) 7tB 2 d (W (R, t) N (t))dR ÷ I ( * + B <v>D) " 

aR~"-B'(k,t)No(P(k)d)~dt ' ]~'(v) _ F ( e )  _ ,  - ~ I<oh*.),(t)>bdm[ 

('~ I) 

We will clarify the physical meaning of the quantities on the right-hand side of (4.1). 
The first integral on the right-hand side of (4.1) characterizes the dissipation mechanical 
energy of dislocation loops into thermal energy of the crystal because of viscous deceleration. 
The dissipation occurs by the appearance of phonon viscosity, thermoelastic dissipation, 
phonon scattering, and flutter-effect mechanisms, where all the mechanisms mentioned result 
in viscous deceleration of the dislocations, which depend in a linear manner on the dislocation 
rate. 

The second integral on the right-hand side of (4.1) describes the loop mechanical energy 
dissipation due to the action of radiation friction (the dynamic Peierls force) that a dis- 
location experiences during its displacement over a discrete crystalline lattice when its 
atomic configuration and elastic energy experience periodic changes. The dislocation here 
emits phonons (thermal oscillations), i.e., gives up part of its energy to the atoms of the 
crystalline lattice. 

The third.integral on the right-hand side of (4.1) corresponds to loop mechanical energy 
dissipation due to their deceleration by the internal long-acting stress fields of adjacent 
dislocations. This dissipation mechanism is realized because of arching of the moving dis- 
location arcs between peaks of the field aam(*), their collapse and partial annihilation 
with the adjacent arcs during rectification of the dislocations. Then this process is 
repeated again and again. It should be noted that a thermal energy increment is possible 
here even because of the formation of cutoff processes during intersection of the dislocations 
and deceleration of the dislocations because of the non-conservative motion of these cutoffs. 
However, these effects are only important at low temperatures (T~0.2Y0, where T o is the 
absolute melting point) and low velocities of dislocation motion. 

The fourth integral on the right-hand side of (4.1) has the meaning of an increment of 
the crystal thermal energy due to dissipation of the mechanical energy of the moving dis- 
location loops, occuring in the crystal during the time interval between t and t ~- dr, into 
thermal energy over all possible channels. 

Let us examine the last integral on the right-hand side of relationship (4.1). Each of 
the N0~ (A) d~ dislocation segments with base length from ~ to ~d~ in the time interval 
dt marks an area ~R~'(k,t) dt that performs work against the radiation friction force, the 
internal remote-acting stress fields of the adjacent dislocations and the viscous deceleration. 
Thus, the last integral on the right-hand side of (4.1) characterizes the mechanical energy 
dissipation of moving dislocation segments over all the channels listed above. 

The microscopic characteristics of individual dislocation structures occur in (4.1). We 
later transform this relationship into a form when only macroscopic plastic flow character- 
istics and statistical characteristics of the ensemble of dislocation loops and segments will 
occur on its right-hand side. 

5. An e~ess~or the dissipatiPe ~ t ~ .  We first transform the second and third 
integrals on the right-hand side of (4.1), as well as those parts of the fourth and fifth 
integrals that characterize energy dissipation due to radiation friction and internal long- 
acting stress fields of ad3acent dislocations. We here use relationships (3.2), having 
first convoluted it with 2b0j)Y ~, and also the equality 

2b(,~)boj ) = b 2 (5 . i )  

We hence have 

2 ~  2 ~  

I S F'*P' <">" RN (t) V (R, t) aR e~ at + I I F(*~%n' a (V (R, t) N(t))aR + 
o o 

I F(*P)~R~2~I" (k, t) No~ (k) d~ d t =  F(,P)2b(,j)e,:" (t) b-" dt 

(5.2) 
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We now transform the first integral on the right-hand side of (4.1) and that part of the 
fourth integral that characterizes mechanical energy dissipation due to viscous deceleration 
of the dislocations. We have 

2~ 

1 .  = I I B <v>D <v>v R N  (t) W ( Fl' t) dR  dq~ dt + 
0 

I B <<V>D>x ~ R~ d ( ~  (R, t) N (t)) dR  

Furthermore, using the value <V>D from (2.9), first convoluted with the unit vector 
with the components ~3~l~kn: and taking (2.10) into account, we find the mean value of the 
dislocation segment velocity in the time interval t~ (~)~ ~ t~+ I (~) i.e., the value <<V>D>X 
in the expression for 1, 

tn+l(~-) 

<<v (~, t)>D>x = (t,,+~ (E) --  tn (~,))-I I <V (~, t)>D d x = 
tn  (; ) 

tn+10 ) 

(t,,+, (k) --  t .  (k)) -I f B-1 (K -- <F ('' (~, t)>D) dx = B -~ (K -- AGb~/(%~.)), 
tn( ' )  

K = I o~!, (t) b~tm t r*) F(P) - <~.,. ( t ) >  b d . ~  - -  

Moreover, using relationship (2.6) and the properties of the distribution density func- 
tion • (R, t) and also taking into account that the mobile dislocation loop density u0 (t) 
is given by relationship (2.7), while the values of the mean velocity of the ensemble of dis- 
location loops <v>R and the velocity of the dislocation loop of mean radius v<R>R is 
found from the equalities 

B <v>s = K --  AGb ~ <R-~>s, Bv<~> = K - -  AGb ~ <R)~ 1 (5.3) 

(here v<n>n :¢= <R>n'), we obtain 

J ,  -= ao (t) dt (Kv<~R -- AGb 2 <v>R<R>~ 1) -4- K f nR2 d ("Z (R, t) N (t)) dR  - -  

AGb2 f 2=R d ( ~  (R, t) N (t)) dR 

(5.4) 

The expression V<R>R in terms of the plastic strain rate tensor components e~ ) that 

occur only because of the motion and multiplication of the dislocation loops must be found 
for the subsequent calculations. It follows from (3.2) that 

e:~ )) (t) = Ix + Is 

l I = b~l,t)2:t I <V>DTIN (t) T (R, t) dR,  12 ~ b(n) I nTI2 (~F (TI, t) N (t))'dTl 

(5.5) 

We transform the first integral on the right-hand side of this equality. Using relation- 
ships (2.7), (2.9), and (5.3), we have 

I ,  = 2~N (t) B-lbcko ~ ( K - -  AGb~R -1) R ~  (B, t) dR  = 

2~N (t) <R>np(R>R b(~z) = bc~:)a o (t) v~R >R 

Substituting this value into (5.5) and convoluting it with 2b-~b(~o taking (5.1) into 
account, a value can be found for the velocity of a loop having a mean radius in the ensewd~le 
of loops 

2btAt)e~(P) (t) 1 
V<R>R = b ~  (t) ao (t) I aR2 (W' (R, t) N (t))" dR (5.6) 

Substituting the value v<R>~ from (5.6) into (5.4), and also taking account of (2.7), 
(2.9), and (5.3), we obtain 

( 4Sb(,j)b~/~ °) (t) 2Bb(,. 
b'~o (t) ~ I aR~" ( ~  ( R '  t) N (t))" d R  + (5.7) l ,  

\ 
2AGblboD \ (o) 

| deu - -  AGb ~ d~ o 
/ 
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dissipation due to viscous deceleration of the moving dislocation segments. 
(2.9) written for dislocation segments in scalar form 

we obtain 

We now transform that part of the last integral in (4.1) that characterizes the energy 
Using (2.2) and 

AGb~I'(~, t) 
B <t' (~, t)>D = K - -  ~v (~, t)~ D l(~, t) (5.8) 

1"* = f B <t'>D ~R~%l" (~, t) No~ (k) dE dt = 

I(K Aab'l 0 ",t) ¢v (~, t)> D l (X, t) ) l (X, t) <U (~, t)>D No(~ (X) dE dt 

Furthermore, remarking that it follows from (3.2) that the plastic strain rate tensor 
components of a crystal that occur 3ust because of dislocation segment motion are 

(5 9) 

(*) b(,:) I r~R~%l" (~' t) Noq) (k) dE = b(.) I l (~, t) <v (~, t)>D No~ (~) d). ~,, ( t )= (5 10) 

and using the relationships (2.4) and (5.1), we obtain 

l** = 2b(.)b-~Kei~ *) (t) dt -- AGb ~ d A .  (5 11) 

We now note that it follows from (5.i0) that 

~'7 ) (t) = b(,~) <l <t'>D>X M (t) = bo.t)a , (t) <l <V>D>X <l>:1 (5.12) 

Furthermore, applying the operator .<.. >~ to (5.8) and substituting the value obtained 
<<V>D>~ from (5.8) into (5.12) and also using (5.1), we obtain 

K -  2Bb(hl)@~)(t) O ' l ( i V > D - - ( ~ t ' > D > ' t ) > g  
b*~z. (t) <l,~. " + <<F(*)>D>). (5 tA) 

Finally, substituting the value of K from (5.13) into (5.11), we find 

1.* = ( 4Bb(,j)b{~t}@l *) (t) 2Bb(u ) ,'l (CO) D - -  (<VD)~,)> E 
b~.  (t) -- b 2 <l>, ÷ (5. t4) 

2bo:)b -2 <</' (")>D>7) de~ *) - -  AGb2 d A .  

Now using the transformed expression of (4.1) for the increment of the total magnitude 
of the dissipated energy of the moving dislocation structures per unit volume of the crystal, 
referred to unit absolute temperature, an expression oan be written for the DF of the plastic 
flow of a crystal 

(o) ± ~ ~ (o)~ ~o) , (*) iv' (*) 7*) 

AGb~T-J%" __ AGb~T-tA,  • 
2Bb(,j) ~ 2AGb*b(,~) 

L~j = N .  TbSao(t) ~ rIR~(T ( R ' t ) N  (t)) 'dR + tb'<R~'--------~ 

F.~t 4Bbo))b(M) 4Bb(¢))b(]~l) 
Tb~t. (t) ' E2Jkl = Tb~.  (t) 

2b(n ) M .  : N .  --  2Bbo" ¢10., t) (~v (~., tbD --  <~v (~., t),Db)> ~ + ~ <<F(O) (~', t)>o>x 
Tb ~ tl (~,., t),~ 

N,~ 2F(P)b(*J)rb' ~- ~ (A,Gb V-~ + ao (t) + A .  (t) + AiGb(. ) ]/~**) 

(5 ~a) 

where dezj (0) and deo(*) are, respectively, the increment of plastic strain due to loop 
motion and segment motion (the total plastic strain is ezj = e,](°)~- e,j t*)) It can be seen that 
the right-hand side of (5.15) is always non-negative. The relationship obtained shows that 
homogeneous functions of the first and second degree in the plastic strain rates e~) and 

e~*) produced by both kinds of dislocation structures, occur in the expression for the DF. 
However, the essential distinction from phenomenological methods of giving the DF is the 
dependence on not only the plastic strain rates but also on the rates of change of the crystal 
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microstructure parameters s 0" and A,'. The coefficients Lu, FUji, Mr], E,jk~ and AGb2T -I in 
(5.15) for the DF are expressed in terms of the macroscopic characteristics of the ensemble 
of dislocation structures and have a specific value and an explicit physical meaning, and can 
be determined from the solution of the equations of the model /8, 9/. 

REFERENCES 

i. SEDOV L.I., Mechanics of a Continuous Medium, i, Nauka, Moscow, 1973. 
2. SEDOV L.I., Mathematical methods of constructing new models of continuous media, Usp. Mat. 

Nauk, 20, 5, 1965. 
3. IVLEV D.D., On the dissipative function in the theory of hardening plastic media, PMM, 31, 

2, 1967. 
4. IVLEV D.D., On the dissipative function in the theory of plastic media, Dokl. Akad. Nauk, 

SSSR, 176, 5, 1967. 
5. KOLAROV D., BALTOV A. and BONCHEVA N., Mechanics of Plastic Media. Mir, Moscow, 1979. 
6. PERZHINA P. and SAWCHUK A., Problems of thermplaticity. Problems of the Theory of Plastic- 

ity and Creep, Mir, Moscow, 1979. 
7. HROZ Z. and RANIECKI B., A derivation of the uniqueness conditions in coupled thermo plas- 

ticity, Intern. J. Eng. Sci., 14, 4, 1976. 
8. LUKERCHENKO V.N., On the derivation of the fundamental kinematic relationship of dislocation 

theory, Dokl. Akad. Nauk SSSR, 274, i, 1984. 
9. LUKERCHENKO V.N., On the theory of deformation hardening of crystalline materials, Fizika 

i Khimiya Obrab. Materialov, 4, 1983. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.53,No.5,pp.649-654,1989 
Printed in Great Britain 

0021-8928/89 $I0.00+0.00 
©1990 Pergamon Press plc 

ON LIMIT SURFACE LOADS IN THE THEORY OF PLASTICITY m 

0.O. BARABANOV 

Within the framework of quasistatic plasticity theory, the specific 
features of surface tangential loading is demonstrated by simple 
examples: the possibility of a singular surface discontinuity, and the 
absence of convergence of limit load coefficients for an arbitrary 
unlimited diminution of the period of the plastic composite. The second 
singularity forces an acknowledgement that the hypothesis /1/ and its 
subsequent verification are false in the case of tangential surface 
loads. 

1. l~ltip1~J~e too%ions. S~RguI~aP slcP~e ~ .  We confine ourselves to the examin- 
ation of rigidly plastic bimaterials in the antiplane and plane cases. The inhomogeneity 
will be given by using the periodic f~mction T (y), defined in the periodicity cell Y ---- (0, i)x 
as follows 

{ x~, V ~ Yk 

"~(Y)= "r~, e ~ Y \ Y ~  

Yk ={Y:  1 2 y l - - t  I < k ,  ~ = t ,  2}, O < x x . < T  2, O < k < t  
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